The Sidon constant of sets with three elements
نویسنده
چکیده
We solve an elementary minimax problem and obtain the exact value of the Sidon constant for sets with three elements {n0, n1, n2}: it is sec(π/2n) for n = max |ni − nj |/ gcd(n1 − n0, n2 − n0).
منابع مشابه
Results on Sidon and B h Sequences
Results on Sidon and Bh Sequences Sangjune Lee A set A of non-negative integers is a Sidon set if all the sums a1 + a2, with a1 ≤ a2 and a1, a2 ∈ A, are distinct. In this dissertation, we deal with results on the number of Sidon sets in [n] = {0, 1, · · · , n − 1} and the maximum size of Sidon sets in sparse random subsets of [n] or N (the set of natural numbers). We also consider a natural gen...
متن کاملOn Partitioning Sidon Sets with Quasi-independent Sets
There is a construction of random subsets of Z in which almost every subset is Sidon (this was first done by Katznelson). More is true: almost every subset is the finite union of quasi-independent sets. Also, if every Sidon subset of Z\{0} is the finite union of quasi-independent sets, then the required number of quasi-independent sets is bounded by a function of the Sidon constant. Analogs of ...
متن کاملComparisons of Sidon and I0 Sets
(1) Bd(E) and B(E) are isometrically isomorphic for finite E ⊂ Γ. Bd(E) = `∞(E) characterizes I0 sets E and B(E) = `∞(E) characterizes Sidon sets E. [In general, Sidon sets are distinct from I0 sets. Within the group of integers Z, the set {2}n ⋃ {2+n}n is helsonian (hence Sidon) but not I0.] (2) Both are Fσ in 2 (as is also the class of finite unions of I0 sets). (3) There is an analogue for I...
متن کاملThe number of Sidon sets and the maximum size of Sidon sets contained in a sparse random set of integers
A set A of non-negative integers is called a Sidon set if all the sums a1+a2, with a1 ≤ a2 and a1, a2 ∈ A, are distinct. A well-known problem on Sidon sets is the determination of the maximum possible size F (n) of a Sidon subset of [n] = {0, 1, . . . , n− 1}. Results of Chowla, Erdős, Singer and Turán from the 1940s give that F (n) = (1 + o(1)) √ n. We study Sidon subsets of sparse random sets...
متن کاملThe Number of Sidon Sets and the Maximum Size of Sidon
A set A of non-negative integers is called a Sidon set if all the sums a1+a2, with a1 ≤ a2 and a1, a2 ∈ A, are distinct. A well-known problem on Sidon sets is the determination of the maximum possible size F (n) of a Sidon subset of [n] = {0, 1, . . . , n− 1}. Results of Chowla, Erdős, Singer and Turán from the 1940s give that F (n) = (1 + o(1)) √ n. We study Sidon subsets of sparse random sets...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001